Medians and Altitudes of Triangles

Warm Up

Lesson Presentation

Lesson Quiz

5-3 Medians and Altitudes of Triangles

Warm Up

1. What is the name of the point where the angle bisectors of a triangle intersect? incenter

Find the midpoint of the segment with the given endpoints.
2. $(-1,6)$ and $(3,0)(1,3)$
3. $(-7,2)$ and $(-3,-8)(-5,-3)$
4. Write an equation of the line containing the points $(3,1)$ and $(2,10)$ in point-slope form.

$$
y-1=-9(x-3)
$$

5-3 Medians and Altitudes of Triangles

Objectives

Apply properties of medians of a triangle.

Apply properties of altitudes of a triangle.

5-3 Medians and Altitudes of Triangles

A median of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side.

Every triangle has three medians, and the medians are concurrent.

5-3 Medians and Altitudes of Triangles

The point of concurrency of the medians of a triangle is the centroid of the triangle. The centroid is always inside the triangle. The centroid is also called the center of gravity because it is the point where a triangular region will balance.

Theorem 5-3-1 Centroid Theorem

The centroid of a triangle is located $\frac{2}{3}$ of the distance from each vertex to the midpoint of the opposite side.

$$
A P=\frac{2}{3} A Y \quad B P=\frac{2}{3} B Z \quad C P=\frac{2}{3} C X
$$

5-3 Medians and Altitudes of Triangles

Example 1A: Using the Centroid to Find Segment Lengths

In $\triangle L M N, R L=21$ and $S Q=4$. Find LS.

$$
\begin{array}{ll}
L S=\frac{2}{3} R L & \text { Centroid Thm. } \\
L S=\frac{2}{3}(21) & \text { Substitute } 21 \text { for } R L . \\
L S=14 & \text { Simplify. }
\end{array}
$$

5-3 Medians and Altitudes of Triangles

Example 1B: Using the Centroid to Find Segment Lengths

In $\triangle L M N, R L=21$ and $S Q=4$.

 Find $N Q$.$$
N S=\frac{2}{3} N Q \quad \text { Centroid Thm. }
$$

$N S+S Q=N Q$ Seg. Add. Post.
$\frac{2}{3} N Q+S Q=N Q$ Substitute $\frac{2}{3} N Q$ for $N S$.
$S Q=\frac{1}{3} N Q$ Subtract $\frac{2}{3}$ from both sides.
$4=\frac{1}{3} N Q$ Substitute 4 for $S Q$.
$12=$ NQ Multiply both sides by 3.

5-3 Medians and Altitudes of Triangles

Check It Out! Example 1a

In $\triangle J K L, Z W=7$, and $L X=8.1$. Find $K W$.

$Z W=\frac{2}{3} K W \quad$ Centroid Thm.
$7=\frac{2}{3} K W$ Substitute 7 for $Z W$.
$K W=21 \quad$ Multiply both sides by 3.

5-3 Medians and Altitudes of Triangles

Check It Out! Example 1b

In $\triangle J K L, Z W=7$, and $L X=8.1$. Find $L Z$.

$$
\begin{aligned}
L Z & =\frac{2}{3} L X & & \text { Centroid Thm. } \\
L Z & =\frac{2}{3}(8.1) & & \text { Substitute } 8.1 \text { for } L X . \\
L Z & =5.4 & & \text { Simplify. }
\end{aligned}
$$

5-3 Medians and Altitudes of Triangles

Example 2: Problem-Solving Application

A sculptor is shaping a triangular piece of iron that will balance on the point of a cone. At what coordinates will the triangular region balance?

Example 2 Continued

1 Understand the Problem

The answer will be the coordinates of the centroid of the triangle. The important information is the location of the vertices, $A(6,6), B(10,7)$, and $C(8,2)$.

Make a Plan

The centroid of the triangle is the point of intersection of the three medians. So write the equations for two medians and find their point of intersection.

5-3 Medians and Altitudes of Triangles

Example 2 Continued

3 Solve

Let M be the midpoint of $\overline{A B}$ and N be the midpoint of $\overline{A C}$.
$M=\left(\frac{6+10}{2}, \frac{6+7}{2}\right)=\left(8,6 \frac{1}{2}\right) \quad N=\left(\frac{6+8}{2}, \frac{6+2}{2}\right)=(7,4)$
$\overline{C M}$ is vertical. Its equation is $x=8 . \overline{B N}$ has slope 1 . Its equation is $y=x-3$. The coordinates of the centroid are $D(8,5)$.

5-3 Medians and Altitudes of Triangles

Example 2 Continued

4 Look Back

Let L be the midpoint of $B C$. The equation for $\overline{A L}$ is $y=-\frac{1}{2} x+9$, which intersects $x=8$ at $D(8,5)$.

5-3 Medians and Altitudes of Triangles

An altitude of a triangle is a perpendicular segment from a vertex to the line containing the opposite side.

Every triangle has three altitudes. An altitude can be inside, outside, or on the triangle.

5-3 Medians and Altitudes of Triangles

In $\triangle Q R S$, altitude $\overline{Q Y}$ is inside the triangle, but $\overline{R X}$ and $\overline{S Z}$ are not. Notice that the lines containing the altitudes are concurrent at P. This point of concurrency is the orthocenter of the triangle.

5-3 Medians and Altitudes of Triangles

Helpful Hint

The height of a triangle is the length of an altitude.

5-3 Medians and Altitudes of Triangles

Check It Out! Example 3

Show that the altitude to $\overline{J K}$ passes through the orthocenter of $\triangle J K L$.

An equation of the altitude to $\overline{J K}$ is $y=-\frac{1}{2} x+3$.
$4=-\frac{1}{2}(-2)+3$.

$4=1+3$
$4=4$
Therefore, this altitude passes through the orthocenter.

