Warm Up

Lesson Presentation

Lesson Quiz

(12-5) Angle Relationships in Circles

Consider the diagram below.

Find the sector area of $\widehat{C D E}$.

(12-5) Angle Relationships in Circles

Objectives

Find the measures of angles formed by lines that intersect circles.

Use angle measures to solve problems.

(12-5) Angle Relationships in Circles

Theorem 11-5-1

THEOREM

HYPOTHESIS

CONCLUSION

If a tangent and a secant (or chord) intersect on a circle at the point of tangency, then the measure of the angle formed is half the measure of its intercepted arc.

Tangent $\overrightarrow{B C}$ and secant $\overrightarrow{B A}$ intersect at B.
$\mathrm{m} \angle A B C=\frac{1}{2} \mathrm{~m} \overparen{A B}$

12-5 Angle Relationships in Circles

Example 1A: Using Tangent-Secant and Tangent-Chord Angles

Find each measure. m $\angle E F H$

$$
\begin{aligned}
\mathrm{m} \angle E F H & =\frac{1}{2} \mathrm{~m} \overparen{F H} \\
\mathrm{~m} \angle E F H & =\frac{1}{2}\left(130^{\circ}\right) \\
& =65^{\circ}
\end{aligned}
$$

12-5 Angle Relationships in Circles

Example 1B: Using Tangent-Secant and Tangent-Chord Angles

Find each measure. $\mathbf{m G F}$

$$
\mathrm{m} \angle G=\frac{1}{2} \mathrm{~m} \overparen{G F}
$$

$180^{\circ}-122^{\circ}=\frac{1}{2} m \overparen{G F}$

$$
58^{\circ}=\frac{1}{2} m \overparen{G F}
$$

$$
116^{\circ}=\mathrm{m} \overparen{G F}
$$

12-5) Angle Relationships in Circles

Check It Out! Example 1a

Find each measure. m \angle STU

$$
\begin{aligned}
\mathrm{m} \angle S T U & =\frac{1}{2} \mathrm{~m} \overparen{S T} \\
\mathrm{~m} \angle S T U & =\frac{1}{2}\left(166^{\circ}\right) \\
& =83^{\circ}
\end{aligned}
$$

(12-5) Angle Relationships in Circles

Check It Out! Example 1b

Find each measure. m $\overline{S R}$
$\mathrm{m} \angle S R Q=\frac{1}{2} \mathrm{~m} \overparen{S R}$
$\left(71^{\circ}\right)=\frac{1}{2}(\mathrm{~m} \overparen{S R})$

$142^{\circ}=\mathrm{m} \overparen{S R}$

(12-5) Angle Relationships in Circles

Theorem 11-5-2

THEOREM

If two secants or chords intersect in the interior of a circle, then the measure of each angle formed is half the sum of the measures of its intercepted arcs.

HYPOTHESIS

Chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

CONCLUSION

$$
\mathrm{m} \angle 1=\frac{1}{2}(\mathrm{~m} \overparen{A B}+\mathrm{m} \overparen{C D})
$$

(12-5) Angle Relationships in Circles

Example 2: Finding Angle Measures Inside a Circle

Find each measure. m $\angle A E B$

$$
\begin{aligned}
\mathrm{m} \angle A E B & =\frac{1}{2}(\mathrm{~m} \overparen{A B}+\mathrm{m} \overparen{C D}) \\
& =\frac{1}{2}\left(139^{\circ}+113^{\circ}\right) \\
& =\frac{1}{2}\left(252^{\circ}\right) \\
& =126^{\circ}
\end{aligned}
$$

12-5 Angle Relationships in Circles

Check It Out! Example 2a

Find each angle measure. m $\angle A B D$

$$
\begin{aligned}
& \mathrm{m} \angle A B D=\frac{1}{2}(\mathrm{~m} \overparen{E C}+\mathrm{m} \overparen{A D}) \\
& \mathrm{m} \angle A B D=\frac{1}{2}\left(37^{\circ}+65^{\circ}\right) \\
& \mathrm{m} \angle A B D=\frac{1}{2}\left(102^{\circ}\right) \\
& \mathrm{m} \angle A B D=51^{\circ}
\end{aligned}
$$

12-5) Angle Relationships in Circles

Check It Out! Example 2b

Find each angle measure. $\mathbf{m} \angle \mathbf{R N M}$

$$
\begin{aligned}
& \mathrm{m} \angle M N Q=\frac{1}{2}(\mathrm{~m} \overparen{M Q}+\mathrm{m} \overparen{R P}) \\
& \mathrm{m} \angle M N Q=\frac{1}{2}\left(91^{\circ}+225^{\circ}\right)=158^{\circ} \\
& \mathrm{m} \angle R N M=180^{\circ}-\angle M N Q \\
& \mathrm{~m} \angle R N M=180^{\circ}-158^{\circ}=22^{\circ}
\end{aligned}
$$

(12-5) Angle Relationships in Circles

Theorem 11-5-3

If a tangent and a secant, two tangents, or two secants intersect in the exterior of a circle, then the measure of the angle formed is half the difference of the measures of its intercepted arcs.

$\mathrm{m} \angle 1=\frac{1}{2}(\mathrm{~m} \overparen{A D}-\mathrm{m} \overparen{B D})$
$\mathrm{m} \angle 2=\frac{1}{2}(\mathrm{~m} \overparen{E H G}-\mathrm{m} \overparen{E G})$
$\mathrm{m} \angle 3=\frac{1}{2}(\mathrm{~m} \overparen{N}-\mathrm{m} \overparen{K M})$

12-5 Angle Relationships in Circles

Example 3: Finding Measures Using
Tangents and Secants
Find the value of \boldsymbol{x}.
A.

$$
\begin{aligned}
x & =\frac{1}{2}(m \overparen{C G}-m \overparen{D F}) \\
& =\frac{1}{2}\left(87^{\circ}-7^{\circ}\right) \\
& =40^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{1}{2}(m \overparen{A D}-m \overparen{B D}) \\
& =\frac{1}{2}\left(200^{\circ}-74^{\circ}\right) \\
& =63^{\circ}
\end{aligned}
$$

12-5 Angle Relationships in Circles

Check It Out! Example 3

Find the value of \boldsymbol{x}.

$$
\begin{aligned}
\mathrm{m} \angle L & =\frac{1}{2}(\mathrm{~m} \overparen{J N}-\mathrm{m} \overparen{K M}) \\
25^{\circ} & =\frac{1}{2}\left(83^{\circ}-x^{\circ}\right) \\
50^{\circ} & =83^{\circ}-x \\
x & =33^{\circ}
\end{aligned}
$$

12-5 Angle Relationships in Circles

Example 4: Design Application

In the company logo shown, $\mathbf{m F H}=108^{\circ}$, and $m L J=12^{\circ}$. What is $m \angle F K H$?

$$
\begin{aligned}
\mathrm{m} \angle F K H & =\frac{1}{2}(\mathrm{~m} \overparen{F H}-\mathrm{m} \overparen{L J}) \\
& =\frac{1}{2}\left(108^{\circ}-12^{\circ}\right) \\
& =\frac{1}{2}\left(96^{\circ}\right)=48^{\circ}
\end{aligned}
$$

(12-5) Angle Relationships in Circles

Check It Out! Example 4

Two of the six muscles that control eye movement are attached to the eyeball and intersect behind the eye. If mAEB $=225^{\circ}$, what is $\mathrm{m} \angle A C B$?

$$
\begin{aligned}
\mathrm{m} \angle A C B & =\frac{1}{2}(\mathrm{~m} \overparen{A E B}-\mathrm{m} \overparen{A B}) \\
& =\frac{1}{2}\left(225^{\circ}-135^{\circ}\right) \\
& =\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}
\end{aligned}
$$

(12-5) Angle Relationships in Circles

Angle Relationships in Circles

VERTEX OF THE ANGLE	MEASURE OF ANGLE	DIAGRAMS
On a circle	Half the measure of its intercepted arc	$\mathrm{m} \angle 1=60^{\circ}$ $\mathrm{m} \angle 2=100^{\circ}$
Inside a circle	Half the sum of the measures of its intercepted arcs	$\begin{aligned} \mathrm{m} \angle 1 & =\frac{1}{2}\left(44^{\circ}+86^{\circ}\right) \\ & =65^{\circ} \end{aligned}$
Outside a circle	Half the difference of the measures of its intercepted arcs	$\begin{aligned} \mathrm{m} \angle 1 & =\frac{1}{2}\left(202^{\circ}-78^{\circ}\right) & \mathrm{m} \angle 2 & =\frac{1}{2}\left(125^{\circ}-45^{\circ}\right) \\ & =62^{\circ} & & =40^{\circ} \end{aligned}$

(12-5) Angle Relationships in Circles

Example 5: Finding Arc Measures

Find $\mathbf{m} \overparen{Y Z}$.

 Step 1 Find m $\overparen{U Y}$. $\mathrm{m} \angle X V Y=\frac{1}{2}(\mathrm{~m} \overparen{U Y}+\mathrm{m} \overparen{W Z})$If a tangent and a secant intersect on a
 $\%$ at the pt. of tangency, then the measure of the \angle formed is half the measure of its intercepted arc.
$180^{\circ}-113^{\circ}=\frac{1}{2}\left(\mathrm{~m} \overparen{U Y}+68^{\circ}\right) \quad$ Substitute $180-113$ for $m \angle X V Y$ and 68 for $m W Z$
$134^{\circ}=\mathrm{m} \overparen{U Y}+68^{\circ} \quad$ Multiply both sides by 2. $m \overparen{U Y}=66^{\circ}$

Subtract 68 from both sides.

(12-5) Angle Relationships in Circles

Example 5 Continued

Step 2 Find $m \widehat{Y Z}$.

$$
\begin{aligned}
\mathrm{m} \angle X=\frac{1}{2}(\mathrm{~m} \overparen{Y Z}-\mathrm{m} \overparen{U Y}) & \text { Thm. 11-5-3 } \\
49^{\circ}=\frac{1}{2}\left(\mathrm{~m} \overparen{Y Z}-66^{\circ}\right) & \text { Substitute the given values. } \\
98^{\circ}=\mathrm{m} \overparen{Y Z}-66^{\circ} & \text { Multiply both sides by } 2 . \\
164^{\circ}=\mathrm{m} \overparen{Y Z} & \text { Add } 66 \text { to both sides. }
\end{aligned}
$$

12-5 Angle Relationships in Circles

Check It Out! Example 5

Find $\mathbf{m L P}$

Step 1 Find $m \overparen{P R}$.

$$
\begin{aligned}
\mathrm{m} \angle P Q R & =\frac{1}{2}(\mathrm{~m} \overparen{M S}-\mathrm{m} \overparen{P R}) \\
26^{\circ} & =\frac{1}{2}\left(80^{\circ}-\mathrm{m} \overparen{P R}\right)
\end{aligned}
$$

Step 2 Find $m \overparen{L P}$.

$$
52^{\circ}=80^{\circ}-\mathrm{m} \overparen{P R}
$$

$$
28^{\circ}=\mathrm{m} \overparen{P R}
$$

$$
\begin{aligned}
\mathrm{m} \overparen{L R} & =\mathrm{m} \overparen{L P}+\mathrm{m} \overparen{P R} \\
100^{\circ} & =\mathrm{m} \overparen{L P}+28^{\circ} \\
72^{\circ} & =\mathrm{m} \overparen{L P}
\end{aligned}
$$

