Warm Up
Lesson Presentation
Lesson Quiz

Consider the diagram below.

Find the sector area of \widehat{CDE} .

Objectives

Find the measures of angles formed by lines that intersect circles.

Use angle measures to solve problems.

Theorem 11-5-1

THEOREM HYPOTHESIS CONCLUSION

If a tangent and a secant (or chord) intersect on a circle at the point of tangency, then the measure of the angle formed is half the measure of its intercepted arc.

secant \overrightarrow{BA} intersect at B.

$$m\angle ABC = \frac{1}{2}m\widehat{AB}$$

Example 1A: Using Tangent-Secant and Tangent-Chord Angles

Find each measure.

m/EFH

$$m\angle EFH = \frac{1}{2}m\widehat{FH}$$

$$m\angle EFH = \frac{1}{2}(130^{\circ})$$

$$= 65^{\circ}$$

Example 1B: Using Tangent-Secant and Tangent-Chord Angles

Find each measure.

$$m\angle G = \frac{1}{2}m\widehat{GF}$$

$$180^{\circ} - 122^{\circ} = \frac{1}{2} \, \text{m} \widehat{GF}$$

$$58^{\circ} = \frac{1}{2} \, \text{m} \widehat{GF}$$

$$116^{\circ} = m\widehat{GF}$$

Check It Out! Example 1a

Find each measure.

m/STU

$$m\angle STU = \frac{1}{2}m\widehat{ST}$$

$$m\angle STU = \frac{1}{2}(166^{\circ})$$

$$= 83^{\circ}$$

Check It Out! Example 1b

Find each measure.

mSR

$$m \angle SRQ = \frac{1}{2} m \widehat{SR}$$
$$(71^{\circ}) = \frac{1}{2} (m \widehat{SR})$$

$$142^{\circ} = m\widehat{SR}$$

Theorem 11-5-2

THEOREM

If two secants or chords intersect in the interior of a circle, then the measure of each angle formed is half the sum of the measures of its intercepted arcs.

HYPOTHESIS

Chords \overline{AD} and \overline{BC} intersect at E.

CONCLUSION

$$m \angle 1 = \frac{1}{2} (m \widehat{AB} + m \widehat{CD})$$

Example 2: Finding Angle Measures Inside a Circle

Find each measure.

m/AEB

$$m\angle AEB = \frac{1}{2} \left(m\widehat{AB} + m\widehat{CD} \right)$$
$$= \frac{1}{2} \left(139^{\circ} + 113^{\circ} \right)$$
$$= \frac{1}{2} \left(252^{\circ} \right)$$
$$= 126^{\circ}$$

Check It Out! Example 2a

Find each angle measure.

m/ABD

$$m\angle ABD = \frac{1}{2} \left(m\widehat{EC} + m\widehat{AD} \right)$$

$$m\angle ABD = \frac{1}{2} (37^{\circ} + 65^{\circ})$$

$$m\angle ABD = \frac{1}{2}(102^\circ)$$

$$m\angle ABD = 51^{\circ}$$

Check It Out! Example 2b

Find each angle measure.

m/RNM

$$m \angle MNQ = \frac{1}{2} \left(m \widehat{MQ} + m \widehat{RP} \right)$$

$$m \angle MNQ = \frac{1}{2} (91^{\circ} + 225^{\circ}) = 158^{\circ}$$

$$m\angle RNM = 180^{\circ} - \angle MNQ$$

$$m\angle RNM = 180^{\circ} - 158^{\circ} = 22^{\circ}$$

Theorem 11-5-3

If a tangent and a secant, two tangents, or two secants intersect in the exterior of a circle, then the measure of the angle formed is half the difference of the measures of its intercepted arcs.

$$m \angle 1 = \frac{1}{2} (m\widehat{AD} - m\widehat{BD})$$

$$\mathsf{m} \angle \mathbf{1} = \frac{1}{2} \Big(\mathsf{m} \widehat{AD} - \mathsf{m} \widehat{BD} \Big) \qquad \mathsf{m} \angle \mathbf{2} = \frac{1}{2} \Big(\mathsf{m} \widehat{EHG} - \mathsf{m} \widehat{EG} \Big) \qquad \mathsf{m} \angle \mathbf{3} = \frac{1}{2} \Big(\mathsf{m} \widehat{JN} - \mathsf{m} \widehat{KM} \Big)$$

$$m \angle 3 = \frac{1}{2} (m\widehat{JN} - m\widehat{KM})$$

Example 3: Finding Measures Using Tangents and Secants

Find the value of x.

$$x = \frac{1}{2} \left(m\widehat{CG} - m\widehat{DF} \right)$$
$$= \frac{1}{2} \left(87^{\circ} - 7^{\circ} \right)$$
$$= 40^{\circ}$$

$$x = \frac{1}{2} \left(m\widehat{AD} - m\widehat{BD} \right)$$

$$=\frac{1}{2}\left(200^{\circ}-74^{\circ}\right)$$

$$= 63^{\circ}$$

Check It Out! Example 3

Find the value of x.

$$m\angle L = \frac{1}{2} \left(m\widehat{JN} - m\widehat{KM} \right)$$
$$25^{\circ} = \frac{1}{2} \left(83^{\circ} - x^{\circ} \right)$$
$$50^{\circ} = 83^{\circ} - x^{\circ}$$

$$50^{\circ} = 83^{\circ} - x$$

 $x = 33^{\circ}$

Example 4: Design Application

In the company logo shown, $mFH = 108^{\circ}$, and $mLJ = 12^{\circ}$. What is $m\angle FKH$?

$$m\angle FKH = \frac{1}{2} \left(m\widehat{FH} - m\widehat{LJ} \right)$$
$$= \frac{1}{2} \left(108^{\circ} - 12^{\circ} \right)$$
$$= \frac{1}{2} \left(96^{\circ} \right) = 48^{\circ}$$

Check It Out! Example 4

Two of the six muscles that control eye movement are attached to the eyeball and intersect behind the eye. If $m\hat{A}E\hat{B} = 225^{\circ}$, what is m∠*ACB*?

$$m\angle ACB = \frac{1}{2} \left(m\widehat{AEB} - m\widehat{AB} \right)$$
$$= \frac{1}{2} \left(225^{\circ} - 135^{\circ} \right)$$
$$= \frac{1}{2} \left(90^{\circ} \right) = 45^{\circ}$$

Angle Relationships in Circles			
VERTEX OF THE ANGLE	MEASURE OF ANGLE	DIAGRAMS	
On a circle	Half the measure of its intercepted arc	120° m∠1 = 60°	200° m∠2 = 100°
Inside a circle	Half the sum of the measures of its intercepted arcs	44° 1 86°	$m \angle 1 = \frac{1}{2}(44^{\circ} + 86^{\circ})$ = 65°
Outside a circle	Half the difference of the measures of its intercepted arcs	1 78° 202°	2 45° 125°
		$m \angle 1 = \frac{1}{2}(202^{\circ} - 78^{\circ})$ = 62°	$m \angle 2 = \frac{1}{2} (125^{\circ} - 45^{\circ})$ = 40°

Example 5: Finding Arc Measures

Find $m\hat{Y}\hat{Z}$.

Step 1 Find $m\widehat{U}\widehat{Y}$.

$$m\angle XVY = \frac{1}{2} \left(m\widehat{UY} + m\widehat{WZ} \right)$$

Substitute 180 – 113 for m\(XVY \) and 68 for m\(WZ \) Multiply both sides by 2. Subtract 68 from both sides.

Example 5 Continued

Step 2 Find m $\hat{Y}\hat{Z}$.

$$m\angle X = \frac{1}{2} \left(m\widehat{YZ} - m\widehat{UY} \right)$$

$$\frac{1}{2}\left(m\widehat{YZ}-66^{\circ}\right)$$

$$98^{\circ} = m\widehat{YZ} - 66^{\circ}$$

$$164^{\circ} = m\widehat{YZ}$$

Thm. 11-5-3

Substitute the given values.

Multiply both sides by 2.

Add 66 to both sides.

Check It Out! Example 5

Find $\widehat{\mathbf{m}_{LP}}$

Step 1 Find mPR.

$$m\angle PQR = \frac{1}{2} \left(m\widehat{MS} - m\widehat{PR} \right)$$

$$26^{\circ} = \frac{1}{2} \left(80^{\circ} - m\widehat{PR} \right)$$

$$52^{\circ} = 80^{\circ} - m\widehat{PR}$$

$$28^{\circ} = m\widehat{PR}$$

Step 2 Find $m\hat{L}\hat{P}$.

$$\widehat{mLR} = \widehat{mLP} + \widehat{mPR}$$

$$100^{\circ} = m\widehat{LP} + 28^{\circ}$$

$$72^{\circ} = m\widehat{LP}$$