Warm Up

Lesson Presentation

Lesson Quiz

Quadrilaterals $A B C D$ and $E F G H$ are shown in the coordinate plane.

Quadrilateral $E F G H$ is the image of $A B C D$ after a transformation or sequence of transformations.
Which could be the transformation or sequence of transformations?
Select all that apply.
(A) a translation of 3 units to the right, followed by a reflection across the x-axis
(B) a rotation of 180°
(C) a translation of 12 units downward, followed by a reflection across the y-axis
(D) a reflection across the y-axis, followed by a reflection across the x-axis
(E) a reflection across the line with equation $y=x$

12-2 Arcs and Chords

Objectives

Apply properties of arcs. Apply properties of chords.

A central angle is an angle whose vertex is the center of a circle. An arc is an unbroken part of a circle consisting of two points called the endpoints and all the points on the circle between them.

12-2 Arcs and Chords

Arcs and Their Measure

ARC	MEASURE

Arcs and Chords

Example 1: Data Application

The circle graph shows the types of grass planted in the yards of one neighborhood. Find m KLF.

$$
\begin{aligned}
\mathrm{m} \overparen{K L F} & =360^{\circ}-\mathrm{m} \angle K J F \\
\mathrm{~m} \angle K J F & =0.35\left(360^{\circ}\right) \\
& =126^{\circ} \\
\mathrm{m} \overparen{K L F} & =360^{\circ}-126^{\circ} \\
& =234^{\circ}
\end{aligned}
$$

12-2 Arcs and Chords

Check It Out! Example 1

Use the graph to find each of the following.

a. $\mathrm{m} \angle F M C$

$$
\begin{aligned}
\mathrm{m} \angle F M C & =0.30\left(360^{\circ}\right) \\
& =108^{\circ}
\end{aligned}
$$

Central \angle is 30% of the \odot.

$$
\text { b. } \begin{aligned}
\mathrm{m} \widehat{A H B} & =360^{\circ}-\mathrm{m} \angle A M B \\
\mathrm{~m} \angle A H B & =360^{\circ}-0.25\left(360^{\circ}\right) \\
& =270^{\circ}
\end{aligned}
$$

c. $\mathrm{m} \angle E M D=0.10\left(360^{\circ}\right)$
$=36^{\circ}$
Central \angle is 10% of the \odot.

Arcs and Chords

Adjacent arcs are arcs of the same circle that intersect at exactly one point. $R S$ and $S T$ are adjacent arcs.

Postulate 11-2-1 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

$$
\mathrm{m} \overparen{A B C}=\mathrm{m} \overparen{A B}+\mathrm{m} \overparen{B C}
$$

12-2 Arcs and Chords

Example 2: Using the Arc Addition Postulate

Find $m B D$.
$\mathrm{m} \overparen{B C}=97.4^{\circ}$
Vert. $\angle \mathrm{s}$ Thm.
$\mathrm{m} \angle C F D=180^{\circ}-\left(97.4^{\circ}+52^{\circ}\right)$

$$
=30.6^{\circ} \quad \Delta \text { Sum Thm. }
$$

$\mathrm{m} \overparen{C D}=30.6^{\circ} \quad m \angle C F D=30.6^{\circ}$

$\mathrm{m} \overparen{B D}=\mathrm{m} \overparen{B C}+\mathrm{m} \overparen{C D} \quad$ Arc Add. Post.
$=97.4^{\circ}+30.6^{\circ}$ Substitute .
$=128^{\circ}$ Simplify.

12-2 Arcs and Chords

Check It Out! Example 2a

Find each measure.
mJKL

$$
\begin{aligned}
\mathrm{m} \angle K P L & =180^{\circ}-(40+25)^{\circ} \\
\widehat{\mathrm{m} \overparen{K L}} & =115^{\circ} \\
\mathrm{mJKL} & =\mathrm{m} \overparen{J K}+\mathrm{m} \overparen{K L} \\
& =25^{\circ}+115^{\circ} \\
& =140^{\circ}
\end{aligned}
$$

Arc Add. Post.

Substitute.
Simplify.

12-2 Arcs and Chords

Check It Out! Example 2b

Find each measure.
mLJN
$m \overparen{L J N}=360^{\circ}-(40+25)^{\circ}$
$=295^{\circ}$

Within a circle or congruent circles, congruent arcs are two arcs that have the same measure. In the figure $\overparen{S T} \cong \overparen{U V}$.

12-2 Arcs and Chords

THEOREM	HYPOTHESIS		CONCLUSION
In a circle or congruent circles:		$\angle E A D \cong \angle B A C$	$\overline{D E} \cong \overline{B C}$
(1) Congruent central angles have congruent chords.			
(2) Congruent chords have congruent arcs.		$\overline{E D} \cong \overline{B C}$	$\overparen{D E} \cong \overparen{B C}$
(3) Congruent arcs have congruent central angles.		$\overparen{E D} \cong \overparen{B C}$	$\angle D A E \cong \angle B A C$

12-2 Arcs and Chords

Example 3A: Applying Congruent Angles, Arcs, and Chords

$\overline{T V} \cong \overline{W S}$. Find m $\overparen{W S S}$.

$9 n-11=7 n+11$

$$
2 n=22
$$

$$
n=11
$$

$$
\mathrm{m} \overparen{W S}=7(11)+11 \text { Substitute } 11 \text { for } n .
$$

$$
=88^{\circ}
$$

\cong chords have \cong arcs.
Def. of $\cong \operatorname{arcs}$
Substitute the given measures.
Subtract $7 n$ and add 11 to both sides.
Divide both sides by 2.

Simplify.

12-2 Arcs and Chords

Example 3B: Applying Congruent Angles, Arcs, and Chords

$\odot C \cong \odot J$, and $m \angle G C D \cong m \angle N J M$, Find $N M$,

$$
\begin{array}{ll}
\overparen{G D} \cong \overparen{N M} & \angle G C D \cong \angle N J M \\
\overline{G D} \cong \overline{N M} & \cong \operatorname{arcs} \text { have } \cong c h \\
G D=N M & \text { Def. of} \cong \text { chords }
\end{array}
$$

12-2 Arcs and Chords

Check It Out! Example 3a

$\overrightarrow{P T}$ bisects $\angle R P S$. Find $R T$.

$$
\begin{aligned}
\angle R P T & \cong \angle S P T \\
\mathrm{~m} \overparen{R T} & \cong \mathrm{~m} \overparen{T S} \\
R T & =T S \\
6 x & =20-4 x \\
10 x & =20
\end{aligned}
$$

Add $4 x$ to both sides.

$$
x=2
$$

Divide both sides by 10 .

$$
R T=6(2)
$$

Substitute 2 for x.

$$
R T=12
$$

Simplify.

Arcs and Chords

Check It Out! Example 3b

Find each measure.

$\odot A \cong \odot B$, and $\overline{\boldsymbol{C D}} \cong \overline{\boldsymbol{E F}}$. Find $\mathbf{m C D}$.

$$
\mathrm{m} \overparen{C D}=\mathrm{m} \overparen{E F} \quad \cong \text { chords have } \cong \text { arcs }
$$

$25 y^{\circ}=(30 y-20)^{\circ} \quad$ Substitute.

$$
20=5 y
$$

$$
4=y
$$

Divide both sides by 5 .
$C D=25(4) \quad$ Substitute 4 for y.
$\mathrm{mCD}=100^{\circ} \quad$ Simplify.

12-2 Arcs and Chords

THEOREM	HYPOTHESIS	CONCLUSION
11-2-3In a circle, if a radius (or diameter) is perpendicular to a chord, then it bisects the chord and its arc.		$\overline{C D}$ bisects $\overline{E F}$ and $\overparen{E F}$.
$\mathbf{1 1 - 2 - 4}$In a circle, the perpendicular bisector of a chord is a radius (or diameter).		

12-2 Arcs and Chords

Example 4: Using Radii and Chords

Find NP.
Step 1 Draw radius $\overline{R N}$.
$R N=17$ Radii of a \odot are \cong.
Step 2 Use the Pythagorean Theorem.

$S N^{2}+R S^{2}=R N^{2}$
$S N^{2}+8^{2}=17^{2}$
$S N^{2}=225$
$S N=15$
Step 3 Find $N P$.
$N P=2(15)=30 \quad \overline{R M} \perp \overline{N P}$, so $\overline{R M}$ bisects $\overline{N P .}$

