

Warm Up

Lesson Presentation

<u>Lesson Quiz</u>

Holt McDougal Geometry

Quadrilaterals ABCD and EFGH are shown in the coordinate plane.

Quadrilateral EFGH is the image of ABCD after a transformation or sequence of transformations.

Which could be the transformation or sequence of transformations?

Select all that apply.

- a translation of 3 units to the right, followed by a reflection across the x-axis
- B a rotation of 180°
- ③ a translation of 12 units downward, followed by a reflection across the y-axis
- (b) a reflection across the y-axis, followed by a reflection across the x-axis
- (E) a reflection across the line with equation y = x

Holt McDougal Geometry

Apply properties of arcs.

Apply properties of chords.

Holt McDougal Geometry

A <u>central angle</u> is an angle whose vertex is the center of a circle. An <u>arc</u> is an unbroken part of a circle consisting of two points called the endpoints and all the points on the circle between them.

Arcs and Their Measure				
ARC	MEASURE	DIAGRAM		
A minor arc is an arc whose points are on or in the interior of a central angle.	The measure of a minor arc is equal to the measure of its central angle. $\widehat{MAC} = M \angle ABC = x^\circ$	B x° C		
A major arc is an arc whose points are on or in the exterior of a central angle.	The measure of a major arc is equal to 360° minus the measure of its central angle. $\overrightarrow{ADC} = 360^\circ - \underline{m}\angle ABC$ $= 360^\circ - x^\circ$	$B^{A^{*}}$		
If the endpoints of an arc lie on a diameter, the arc is a <mark>semicircle</mark> .	The measure of a semicircle is equal to 180°. m $\widehat{EFG} = 180^{\circ}$			

Holt McDougal Geometry

Example 1: Data Application

The circle graph shows the types of grass planted in the yards of one neighborhood. Find $m\tilde{KLF}$.

Check It Out! Example 1

Use the graph to find each of the following.

a. m∠*FMC* m∠*FMC* = $0.30(360^{\circ})$ = 108° *Central* ∠ *is* 30% of the •.

<u>Adjacent arcs</u> are arcs of the same circle that intersect at exactly one point. \overrightarrow{RS} and \overrightarrow{ST} are adjacent arcs.

Postulate 11-2-1 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

$$\mathbf{m}\widehat{ABC} = \mathbf{m}\widehat{AB} + \mathbf{m}\widehat{BC}$$

Example 2: Using the Arc Addition Postulate

Find m
$$\widehat{BD}$$
.
 $\widehat{mBC} = 97.4^{\circ}$ Vert. $\angle s$ Thm.
 $m\angle CFD = 180^{\circ} - (97.4^{\circ} + 52^{\circ})$
 $= 30.6^{\circ}$ \triangle Sum Thm.
 $\widehat{mCD} = 30.6^{\circ}$ $m\angle CFD = 30.6^{\circ}$
 $\widehat{mBD} = \widehat{mBC} + \widehat{mCD}$ Arc Add. Post.
 $= 97.4^{\circ} + 30.6^{\circ}$ Substitute.
 $= 128^{\circ}$ Simplify.

Check It Out! Example 2a

Check It Out! Example 2b

Within a circle or congruent circles, <u>congruent arcs</u> are two arcs that have the same measure. In the figure $ST \cong UV$.

Theorem 11-2-2					
THEOREM	HYPOTHESIS	CONCLUSION			
In a circle or congruent circles:	D C				
(1) Congruent central angles have congruent chords.	$E \land B \land C \land B \land C \land C \land C \land C \land C \land C \land C$	DE ≅ BC			
(2) Congruent chords have congruent arcs.	\overrightarrow{E} \overrightarrow{B} $\overrightarrow{ED} \cong \overrightarrow{BC}$	DE ≅ BC			
(3) Congruent arcs have congruent central angles.	\overrightarrow{E}	∠DAE ≅ ∠BAC			

Holt McDougal Geometry

12-2 Arcs and Chords

Example 3A: Applying Congruent Angles, Arcs, and Chords V

$TV \cong \overline{WS}$. Find \widehat{mWS} .

- $\widehat{TV} \cong \widehat{WS}$ mTV = mWS
- 9n 11 = 7n + 11
 - 2n = 22
 - n = 11

 $= 88^{\circ}$

- \cong chords have \cong arcs. Def. of \cong arcs
- Substitute the given measures.
- Subtract 7n and add 11 to both sides. Divide both sides by 2.

 $(9n - 11)^{\circ}$

W

 $\widehat{WS} = 7(11) + 11$ Substitute 11 for n.

Simplify.

Example 3B: Applying Congruent Angles, Arcs, and Chords

$\odot C \cong \odot J$, and m $\angle GCD \cong m \angle NJM$. Find NM.

- $\widehat{GD} \simeq \widehat{NM}$ $\overline{GD} \cong \overline{NM}$ GD = NM
- $\angle GCD \cong \angle NJM$
 - \simeq arcs have \simeq chords.
 - Def. of \simeq chords

Holt McDougal Geometry

Check It Out! Example 3a

 $\angle RPT \cong \angle SPT$

- $\mathsf{m}\widehat{RT}\cong\mathsf{m}\widehat{TS}$
- RT = TS

$$6x = 20 - 4x$$

- 10x = 20
 - *x* = 2
 - RT = 6(2)
 - RT = 12

- Add 4x to both sides.
- Divide both sides by 10.
 - Substitute 2 for x.
 - Simplify.

Holt McDougal Geometry

Check It Out! Example 3b

Find each measure. $(A \oplus B)$, and $\overline{CD} \cong \overline{EF}$. Find \widehat{mCD} . $(A \oplus B)$ (A

- Divide both sides by 5.
- Substitute 4 for y.

Simplify.

4 = y

CD = 25(4)

 $m\widehat{CD} = 100^{\circ}$

 $(30y - 20)^{\circ}$

B•

Theorems					
	THEOREM	HYPOTHESIS	CONCLUSION		
11-2-3	In a circle, if a radius (or diameter) is perpendicular to a chord, then it bisects the chord and its arc.	$C \bullet F$	CD bisects EF and EF .		
11-2-4	In a circle, the perpendicular bisector of a chord is a radius (or diameter).	\overline{K} is bisector of \overline{GH} .	JK is a diameter of ⊙A.		

Holt McDougal Geometry

Example 4: Using Radii and Chords

Find NP.

- **Step 1** Draw radius \overline{RN} .
- RN = 17 Radii of $a \odot are \cong$.

Step 2 Use the Pythagorean Theorem.

$SN^2 + RS^2 = RN^2$

- $SN^2 + 8^2 = 17^2$
 - $SN^2 = 225$ So SN = 15 Ta
- Substitute 8 for RS and 17 for RN. Subtract 8² from both sides.
 - Take the square root of both sides.
- Step 3 Find NP.
- NP = 2(15) = 30
- $\overline{RM} \perp \overline{NP}$, so \overline{RM} bisects \overline{NP} .

Holt McDougal Geometry