

Warm Up Lesson Presentation Lesson Quiz

Holt McDougal Geometry

The table shows the approximate measurements of the Great Pyramid of Giza in Egypt and the Pyramid of Kukulcan in Mexico.

Pyramid	Height (meters)	Area of Base (square meters)
Great Pyramid of Giza	147	52,900
Pyramid of Kukulcan	30	3,025

Approximately what is the difference between the volume of the Great Pyramid of Giza and the volume of the Pyramid of Kukulcan?

- A 1, 945, 000 cubic meters
 A
- (B) 2, 562, 000 cubic meters
- ⑤ 5, 835, 000 cubic meters
- ⑦ 7, 686, 000 cubic meters

Objectives

Identify tangents, secants, and chords.

Use properties of tangents to solve problems.

Holt McDougal Geometry

The **interior of a circle** is the set of all points inside the circle. The **exterior of a circle** is the set of all points outside the circle.

Lines and Segments That Intersect Circles

TERM	DIAGRAM
A chord is a segment whose endpoints lie on a circle.	A
A secant is a line that intersects a circle at two points.	Chord B
A tangent is a line in the same plane as a circle that intersects it at exactly one point.	Secant
The point where the tangent and a circle intersect is called the point of tangency .	Tangent C Point of tangency

Example 1: Identifying Lines and Segments That Intersect Circles

Identify each line or segment that intersects $\odot L$.

chords: JM and KM secant: JM tangent: m diameter: KM radii: <u>LK, LJ, and LM</u>

Pairs of Circles		
TERM	DIAGRAM	
Two circles are congruent circles if and only if they have congruent radii.		
	$ \underbrace{\odot A}_{\overline{AC}} \cong \underbrace{\odot B}_{\overline{BD}} \text{ if } \overline{AC} \cong \overline{BD}. \\ \overline{AC} \cong \overline{BD} \text{ if } \odot A \cong \odot B. $	
Concentric circles are coplanar circles with the same center.		
Two coplanar circles that intersect at exactly one point are called tangent circles.		
	Internally Externally tangent circles tangent circles	

Holt McDougal Geometry

Example 2: Identifying Tangents of Circles

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

radius of $\odot R$: 2 Center is (-2, -2). Point on \odot is (-2,0). Distance between the 2 points is 2.

radius of $\odot S$: 1.5

Center is (-2, 1.5). Point on \odot is (-2,0). Distance between the 2 points is 1.5.

Example 2 Continued

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

point of tangency: (-2, 0)

Point where the *•s* and tangent line intersect

equation of tangent line: y = 0Horizontal line through (-2,0)

Check It Out! Example 2

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

radius of $\odot C$: 1

Center is (2, -2). Point on \odot is (2, -1). Distance between the 2 points is 1.

radius of $\odot D$: 3

Center is (2, 2). Point on \odot is (2, -1). Distance between the 2 points is 3.

Check It Out! Example 2 Continued

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

Pt. of tangency: (2, -1)

Point where the *•*s and tangent line intersect

eqn. of tangent line: y = -1Horizontal line through (2,-1)

A <u>common tangent</u> is a line that is tangent to two circles.

Lines ℓ and m are common external tangents to $\bigcirc A$ and $\bigcirc B$.

Holt McDougal Geometry

A <u>common tangent</u> is a line that is tangent to two circles.

Lines p and q are common internal tangents to $\bigcirc A$ and $\bigcirc B$.

Holt McDougal Geometry

Holt McDougal Geometry

Example 4: Using Properties of Tangents

HK and *HG* are tangent to $\odot F$. Find *HG*.

G 4 + 2a2 segments tangent to HK = HG • from same ext. point \rightarrow segments \cong . 5*a* — 32 •F 5a - 32 = 4 + 2a Substitute 5a - 32 for HK and 4 + 2a for HG. 3a - 32 = 4Subtract 2a from both sides. 3a = 36Add 32 to both sides. *a* = 12 Divide both sides by 3. HG = 4 + 2(12) Substitute 12 for a. Simplify. = 28

Holt McDougal Geometry

Check It Out! Example 4b

\overline{RS} and \overline{RT} are tangent to $\odot Q$. Find RS.

- 2 segments tangent to \odot from same ext. point \rightarrow RS = RTsegments \cong . n + 3 = 2n - 14 = n
 - Substitute n + 3 for RS and 2n - 1 for RT.
 - Simplify.
- RS = 4 + 3Substitute 4 for n. = 7 Simplify.

