Warm Up

Lesson Presentation

Lesson Quiz

12-1) Lines That Intersect Circles

The table shows the approximate measurements of the Great Pyramid of Giza in Egypt and the Pyramid of Kukulcan in Mexico.

Pyramid	Height (meters)	Area of Base (square meters)
Great Pyramid of Giza	147	52,900
Pyramid of Kukulcan	30	3,025

Approximately what is the difference between the volume of the Great Pyramid of Giza and the volume of the Pyramid of Kukulcan?
(4) $1,945,000$ cubic meters
(B) $2,562,000$ cubic meters
(c) 5, 835, 000 cubic meters
(c) $7,686,000$ cubic meters

Objectives

Identify tangents, secants, and chords.

Use properties of tangents to solve problems.

The interior of a circle is the set of all points inside the circle. The exterior of a circle is the set of all points outside the circle.

12-1) Lines That Intersect Circles

Lines and Segments That Intersect Circles

TERM
 DIAGRAM

A chord is a segment whose endpoints lie on a circle.

A secant is a line that intersects a circle at two points.

A tangent is a line in the same plane as a circle that intersects it at exactly one point.

The point where the tangent and a circle intersect is called the point of tangency .

12-1) Lines That Intersect Circles

Example 1: Identifying Lines and Segments That Intersect Circles

Identify each line or segment that intersects $\odot L$.

chords: $\overline{J M}$ and $\overline{K M}$
secant: $\overleftrightarrow{J M}$
tangent: m
diameter: $\overline{K M}$
radii: $\overline{L K}, \overline{L J}$, and $\overline{L M}$

12-1) Lines That Intersect Circles

Pairs of Circles

TERM

DIAGRAM

$$
\begin{aligned}
& \odot A \cong \odot B \text { if } \overline{A C} \cong \overline{B D} . \\
& \overline{A C} \cong \overline{B D} \text { if } \odot A \cong \odot B .
\end{aligned}
$$

Concentric circles are coplanar circles with the same center.
Two circles are congruent circles if and only if they have congruent radii.

Internally tangent circles tangent circles

12-1) Lines That Intersect Circles

Example 2: Identifying Tangents of Circles
Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.
radius of $\odot R$: 2

Center is $(-2,-2)$. Point on
\odot is $(-2,0)$. Distance between the 2 points is 2 . radius of $\odot S: 1.5$
Center is $(-2,1.5)$. Point on \odot is $(-2,0)$. Distance between the 2 points is 1.5.

12-1)Lines That Intersect Circles

Example 2 Continued

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.
point of tangency: $(-2,0)$
Point where the ©s and
tangent line intersect
equation of tangent line: $y=0$ Horizontal line through $(-2,0)$

12-1) Lines That Intersect Circles

Check It Out! Example 2

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.
radius of $\odot C$: 1
Center is $(2,-2)$. Point on © is $(2,-1)$. Distance between the 2 points is 1 .
radius of $\odot D: 3$
Center is $(2,2)$. Point on \odot is (2, -1). Distance between the
 2 points is 3.

12-1) Lines That Intersect Circles

Check It Out! Example 2 Continued

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

Pt. of tangency: $(2,-1)$
Point where the os and tangent line intersect
eqn. of tangent line: $y=-1$ Horizontal line through $(2,-1)$

12-1)Lines That Intersect Circles

A common tangent is a line that is tangent to two circles.

Lines ℓ and m are common external tangents to $\odot A$ and $\odot B$.

12-1) Lines That Intersect Circles

A common tangent is a line that is tangent to two circles.

Lines p and q are common internal tangents to $\odot A$ and $\odot B$.

12-1) Lines That Intersect Circles

Theorems

THEOREM

11-1-1 If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency. (line tangent to $\odot \rightarrow$ line \perp to radius)
11-1-2 If a line is perpendicular to a radius of a circle at a point on the circle, then the line is tangent to the circle. (line \perp to radius \rightarrow line tangent to \odot)

HYPOTHESIS
CONCLUSION

12-1)Lines That Intersect Circles

Theorem 11-1-3

THEOREM	HYPOTHESIS	CONCLUSION
If two segments are		
tangent to a circle from		
the same external point,		
then the segments are		
congruent. (2 segs.		
tangent to \odot from		
same ext. pt. \rightarrow segs. \cong)		
$\overline{A B}$ and $\overline{A C}$ are		
tangent to $\odot P$.		

12-1) Lines That Intersect Circles

Example 4: Using Properties of Tangents

$\overline{H K}$ and $\overline{H G}$ are tangent to $\odot \boldsymbol{F}$. Find $\boldsymbol{H G}$.

$$
\begin{aligned}
& 2 \text { segments tangent to } \\
& \odot \text { from same ext. point } \\
& \rightarrow \text { segments } \cong .
\end{aligned}
$$

$5 a-32=4+2 a \quad$ Substitute $5 a-32$ for HK and 4 + 2a for HG.

$$
\begin{aligned}
3 a-32 & =4 & & \text { Subtract 2a from both s } \\
3 a & =36 & & \text { Add } 32 \text { to both sides. } \\
a & =12 & & \text { Divide both sides by } 3 .
\end{aligned}
$$

$H G=4+2(12) \quad$ Substitute 12 for a.

$$
=28
$$

Simplify.

12-1)Lines That Intersect Circles

Check It Out! Example 4b

$\overline{\boldsymbol{R S}}$ and $\overline{\boldsymbol{R T}}$ are tangent to $\odot Q$. Find $\boldsymbol{R S}$.

$$
R S=R T
$$

2 segments tangent to \odot from same ext. point \rightarrow segments \cong.

$$
\begin{aligned}
n+3 & =2 n-1 & & \begin{array}{l}
\text { Substitute } n+3 \text { for } R S \\
\text { and } 2 n-1 \text { for } R T .
\end{array} \\
4 & =n & & \text { Simplify. }
\end{aligned}
$$


```
\(R S=4+3\)
Substitute 4 for \(n\).
= 7
Simplify.
```

