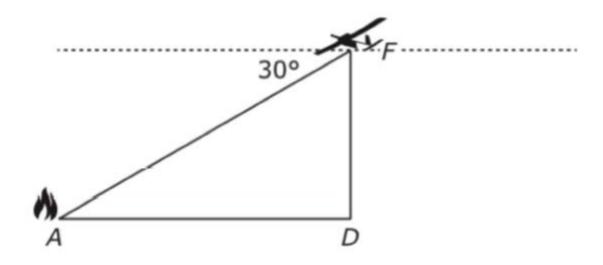


Warm Up Lesson Presentation Lesson Quiz

Holt McDougal Geometry

The UAV is flying at a speed of 13 meters per second in the direction toward the fire. Suppose the altitude of the UAV is now 800 meters. The new position is reprented at F in the figure.



From its position at point *F*, how many minutes, to the nearest tenth of a minute, will it take the UAV to be directly over the fire?

- A 0.6
- B 1.2
- © 1.8
- © 2.0

Objectives

Learn and apply the formula for the volume of a pyramid.

Learn and apply the formula for the volume of a cone.

Holt McDougal Geometry

The square pyramids are congruent, so they have the same volume. The volume of each pyramid is one third the volume of the cube.

Volume of a Pyramid The volume of a pyramid with base area *B* and height *h* is $V = \frac{1}{3}Bh$.

Example 1A: Finding Volumes of Pyramids

Find the volume a rectangular pyramid with length 11 m, width 18 m, and height 23 m.

$$V = \frac{1}{3}Bh = \frac{1}{3}(11 \cdot 18)(23) = 1518 \text{ m}^3$$

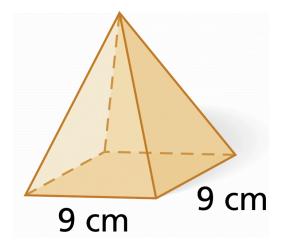
Holt McDougal Geometry

Example 1B: Finding Volumes of Pyramids

Find the volume of the square pyramid with base edge length 9 cm and height 14 cm.

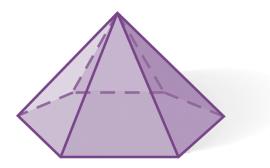
The base is a square with a side length of 9 cm, and the height is 14 cm.

$$V = \frac{1}{3}Bh = \frac{1}{3}(9^2)(14) = 378 \text{ cm}^3$$



Example 1C: Finding Volumes of Pyramids

Find the volume of the regular hexagonal pyramid with height equal to the apothem of the base



Step 1 Find the area of the base.

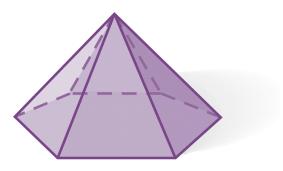
12 ft

$$B = \frac{1}{2}aP$$
 Area of a regular polygon

 $= \frac{1}{2} (6\sqrt{3}) (6(12))$ Substitute $6\sqrt{3}$ for a and 6(12) for P. = $216\sqrt{3}$ ft³ Simplify.

Example 1C Continued

Find the volume of the regular hexagonal pyramid with height equal to the apothem of the base



Step 2 Use the base area and the height to find the volume. The height is equal to the apothem, $a = 6\sqrt{3}$ ft.

12 ft

$$V = \frac{1}{3}Bh$$
Volume of a pyramid. $= \frac{1}{3}(216\sqrt{3})(6\sqrt{3})$ Substitute $216\sqrt{3}$ for B and $6\sqrt{3}$ for h. $= 1296$ ft³Simplify.

Volume of Cones

The volume of a cone with base area *B*, radius *r*, and height *h* is $V = \frac{1}{3}Bh$, or $V = \frac{1}{3}\pi r^2 h$.

Holt McDougal Geometry

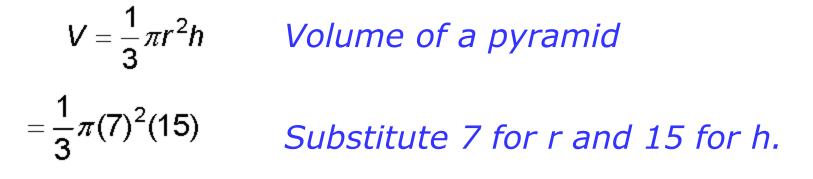
Copyright © by Holt Mc Dougal. All Rights Reserved.

h

h

Example 3A: Finding Volumes of Cones

Find the volume of a cone with radius 7 cm and height 15 cm. Give your answers both in terms of π and rounded to the nearest tenth.



= 245π cm³ \approx 769.7 cm³ Simplify.

Example 3B: Finding Volumes of Cones

Find the volume of a cone with base circumference 25π in. and a height 2 in. more than twice the radius.

Step 1 Use the circumference to find the radius.

 $2\pi r = 25\pi$ Substitute 25π for the circumference.

r = 12.5 Solve for r.

Step 2 Use the radius to find the height.

h = 2(12.5) + 2 = 27 in. The height is 2 in. more than twice the radius.

Example 3B Continued

Find the volume of a cone with base circumference 25π in. and a height 2 in. more than twice the radius.

Step 3 Use the radius and height to find the volume. $V = \frac{1}{3}\pi r^2 h$ Volume of a pyramid.

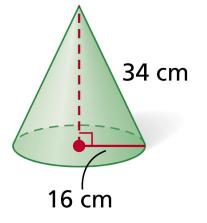
 $=\frac{1}{3}\pi(12.5)^2(27)$ Substitute 12.5 for r and 27 for h.

= 1406.25π in³ \approx 4417.9 in³ Simplify.

Example 3C: Finding Volumes of Cones

Find the volume of a cone.

Step 1 Use the Pythagorean Theorem to find the height.

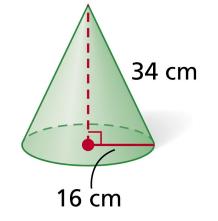


- $16^2 + h^2 = 34^2$ Pythagorean Theorem
 - $h^2 = 900$ Subtract 16² from both sides.
 - h = 30 Take the square root of both sides.

Example 3C Continued

Find the volume of a cone.

Step 2 Use the radius and height to find the volume.



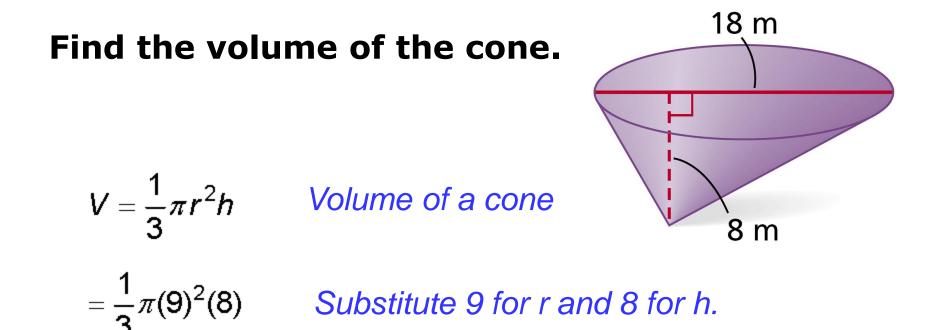
$$V = \frac{1}{3}\pi r^2 h$$
 Volume of a cone

 $=\frac{1}{3}\pi(16)^2(30)$ Substitute 16 for r and 30 for h.

 $\approx 2560 \pi \text{ cm}^3 \approx 8042.5 \text{ cm}^3$ Simplify.

Holt McDougal Geometry

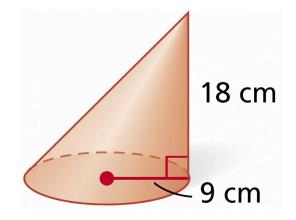
Check It Out! Example 3



 $\approx 216\pi$ m³ ≈ 678.6 m³ Simplify.

Check It Out! Example 4

The radius and height of the cone are doubled. Describe the effect on the volume.



original dimensions: radius and height doubled:

$$V = \frac{1}{3}\pi r^{2}h$$
$$V = \frac{1}{3}\pi r^{2}h$$
$$= \frac{1}{3}\pi (9)^{2}(18) = 486\pi \text{ cm}^{3}$$
$$= \frac{1}{3}\pi (18)^{2}(36) = 3888\pi \text{ cm}^{3}$$

The volume is multiplied by 8.

Holt McDougal Geometry

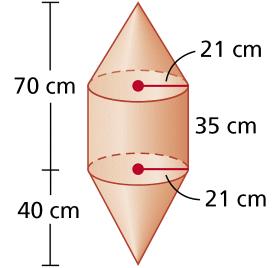
Example 5: Finding Volumes of Composite Three-Dimensional Figures

Find the volume of the composite figure. Round to the nearest tenth.

The volume of the upper cone is

$$V_{upper} = rac{1}{3} \pi r^2 h$$

= $rac{1}{3} \pi (21)^2 (70 - 35) = 5145 \pi \ \mathrm{cm}^3.$



Holt McDougal Geometry