11-3 Volume of Pyramids and Cones

Warm Up

Lesson Presentation

Lesson Quiz

11-3 Volume of Pyramids and Cones

The UAV is flying at a speed of 13 meters per second in the direction toward the fire. Suppose the altitude of the UAV is now 800 meters. The new position is reprented at F in the figure.

From its position at point F, how many minutes, to the nearest tenth of a minute, will it take the UAV to be directly over the fire?
(A) 0.6
(B) 1.2
(C) 1.8
(D) 2.0

11-3 Volume of Pyramids and Cones

Objectives

Learn and apply the formula for the volume of a pyramid.

Learn and apply the formula for the volume of a cone.

11-3 Volume of Pyramids and Cones

The square pyramids are congruent, so they have the same volume. The volume of each pyramid is one third the volume of the cube.

Volume of a Pyramid

The volume of a pyramid with base area B and height h is $V=\frac{1}{3} B h$.

Find the volume a rectangular pyramid with length 11 m , width 18 m , and height 23 m .

$$
V=\frac{1}{3} B h=\frac{1}{3}(11 \cdot 18)(23)=1518 \mathrm{~m}^{3}
$$

Example 1B: Finding Volumes of Pyramids

Find the volume of the square pyramid with base edge length 9 cm and height 14 cm .

The base is a square with a side length of 9 cm , and the height is 14 cm .

$$
V=\frac{1}{3} B h=\frac{1}{3}\left(9^{2}\right)(14)=378 \mathrm{~cm}^{3}
$$

11-3 Volume of Pyramids and Cones

Example 1C: Finding Volumes of Pyramids
Find the volume of the regular hexagonal pyramid with height equal to the apothem of the base

Step 1 Find the area of the base.

$$
\begin{array}{ll}
B=\frac{1}{2} a P & \text { Area of a regular polygon } 12 \mathrm{ft} \\
=\frac{1}{2}(6 \sqrt{3})(6(12)) & \text { Substitute } 6 \sqrt{3} \text { for a and } 6(12) \text { for } P . \\
=216 \sqrt{3} \mathrm{ft}^{3} & \text { Simplify. }
\end{array}
$$

11-3 Volume of Pyramids and Cones

Example 1C Continued

Find the volume of the regular hexagonal pyramid with height equal to the apothem of the base

Step 2 Use the base area and the height to find the volume. The height

12 ft is equal to the apothem, $a=6 \sqrt{3} \mathrm{ft}$.

$$
\begin{aligned}
& V=\frac{1}{3} B h \quad \text { Volume of a pyramid. } \\
= & \frac{1}{3}(216 \sqrt{3})(6 \sqrt{3}) \text { Substitute } 216 \sqrt{3} \text { for } B \text { and } 6 \sqrt{3} \text { for } h . \\
= & 1296 \mathrm{ft}^{3} \quad \text { Simplify. }
\end{aligned}
$$

11-3 Volume of Pyramids and Cones

Volume of Cones

The volume of a cone with base area B, radius r, and height h is $V=\frac{1}{3} B h$, or $V=\frac{1}{3} \pi r^{2} h$.

Example 3A: Finding Volumes of Cones

Find the volume of a cone with radius 7 cm and height 15 cm . Give your answers both in terms of π and rounded to the nearest tenth.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \quad \text { Volume of a pyramid } \\
= & \frac{1}{3} \pi(7)^{2}(15) \quad \text { Substitute } 7 \text { for } r \text { and } 15 \text { for } h . \\
= & 245 \pi \mathrm{~cm}^{3} \approx 769.7 \mathrm{~cm}^{3} \quad \text { Simplify. }
\end{aligned}
$$

Example 3B: Finding Volumes of Cones

Find the volume of a cone with base circumference 25π in. and a height 2 in. more than twice the radius.

Step 1 Use the circumference to find the radius.

$$
\begin{aligned}
2 \pi r & =25 \pi & & \text { Substitute } 25 \pi \text { for the circumference } . \\
r & =12.5 & & \text { Solve for } r .
\end{aligned}
$$

Step 2 Use the radius to find the height.

$$
\begin{array}{r}
h=2(12.5)+2=27 \mathrm{in} . \begin{array}{l}
\text { The height is } 2 \text { in. more } \\
\text { than twice the radius. }
\end{array}
\end{array}
$$

11-3 Volume of Pyramids and Cones

Example 3B Continued

Find the volume of a cone with base circumference 25π in. and a height 2 in. more than twice the radius.

Step 3 Use the radius and height to find the volume.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \quad \text { Volume of a pyramid. } \\
& =\frac{1}{3} \pi(12.5)^{2}(27) \quad \text { Substitute } 12.5 \text { for } r \text { and } 27 \text { for } h . \\
& =1406.25 \pi \mathrm{in}^{3} \approx 4417.9 \mathrm{in}^{3} \quad \text { Simplify. }
\end{aligned}
$$

11-3 Volume of Pyramids and Cones

Example 3C: Finding Volumes of Cones

Find the volume of a cone.

Step 1 Use the Pythagorean Theorem to find the height.

$16^{2}+h^{2}=34^{2}$ Pythagorean Theorem
$h^{2}=900$ Subtract 16^{2} from both sides.
$h=30$ Take the square root of both sides.

11-3 Volume of Pyramids and Cones

Example 3C Continued

Find the volume of a cone.

Step 2 Use the radius and height to find the volume.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \quad \text { Volume of a cone } \\
& =\frac{1}{3} \pi(16)^{2}(30) \quad \text { Substitute } 16 \text { for } r \text { and } 30 \text { for } h . \\
& \\
& \approx 2560 \pi \mathrm{~cm}^{3} \approx 8042.5 \mathrm{~cm}^{3} \quad \text { Simplify. }
\end{aligned}
$$

11-3 Volume of Pyramids and Cones

Check It Out! Example 3

Find the volume of the cone.

$$
V=\frac{1}{3} \pi r^{2} h \quad \text { Volume of a cone }
$$

$=\frac{1}{3} \pi(9)^{2}(8) \quad$ Substitute 9 for r and 8 for h.
$\approx 216 \pi \mathrm{~m}^{3} \approx 678.6 \mathrm{~m}^{3}$ Simplify.

11-3 Volume of Pyramids and Cones

Check It Out! Example 4

The radius and height of the cone are doubled. Describe the effect on the volume.

original dimensions:

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
=\frac{1}{3} \pi(9)^{2}(18)=486 \pi \mathrm{~cm}^{3} \quad=\frac{1}{3} \pi(18)^{2}(36)=3888 \pi \mathrm{~cm}^{3}
$$

The volume is multiplied by 8 .

Example 5: Finding Volumes of Composite ThreeDimensional Figures

Find the volume of the composite figure. Round to the nearest tenth.

The volume of the upper cone is

$$
\begin{aligned}
V_{\text {upper }} & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi(21)^{2}(70-35)=5145 \pi \mathrm{~cm}^{3} .
\end{aligned}
$$

