Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- Find the volume of a right rectangular prism with length 13 cm, width 9 cm, and height 5 cm. Round to the nearest tenth, if necessary.
 a. 585 cm³
 c. 195 cm²
 - b. 292.5 cm^3 d. $1,755 \text{ cm}^3$
- 2. Find the volume of a cylinder with a base area of $64\pi \text{ in}^2$ and height equal to the radius. Give your answer both in terms of π and rounded to the nearest tenth.

a.	$64\pi^2$ in ³ ≈ 631.7 in ³	c.	512π in ³ ≈ 1,608.5 in ³
b.	$1.024 \pi \text{ in}^3 \approx 3.217 \text{ in}^3$	d.	$4.096 \pi \text{ in}^3 \approx 12.868 \text{ in}^3$

3. Find the volume of the three-dimensional figure in terms of *x*.

a.	$6x^3 + 3x^2$	с.	$22x^2 + 8x$
b.	$6x^2 + 3x$	d.	$6x^3 + 3x^2 + 3x$

4. Find the volume of a rectangular pyramid with length 14 cm, width 8 cm, and height 5 cm. Round to the nearest tenth, if necessary.

a.	280 cm^3	c.	186.7 cm ³
b.	560 cm ³	d.	62.2 cm^3

- 5. The base area of a model square pyramid is 1,000 sq ft. The height of the pyramid is 100 ft. Find the volume of the pyramid in cubic feet. Round to the nearest cubic foot.
 - a. $100,000 \text{ ft}^3$ c. $100,000,000 \text{ ft}^3$ b. $33,333 \text{ ft}^3$ d. 1.054 ft^3
- 6. Find the volume of a cone with a base circumference of 21π in. and a height 5 in. less than twice the radius. Give your answer both in terms of π and rounded to the nearest tenth.
 a. 955.5π in ³ ≈ 3,001.8 in³
 c. 29.2π in ³ ≈ 91.6 in³
 - a. 955.5π m $\sim 5,001.8$ mc. 29.2π m ~ 91.0 mb. $1,764\pi$ in $^3 \approx 5,541.8$ in 3 d. 588π in $^3 \approx 1,847.3$ in 3
- 7. The length, width, and height of the rectangular pyramid are multiplied by $\frac{1}{3}$. Describe the effect on the volume.

- a. The volume is multiplied by ¹/₃.
 b. The volume is multiplied by ¹/₉.
- c. The volume is multiplied by ¹/₂₇.
 d. The volume is multiplied by ¹/₈₁.
- 8. Find the volume of the composite figure. Round to the nearest hundredth.

Numeric Response

1. Find the height in centimeters of a square pyramid with a volume of 576 cm^3 and a base edge length equal to the height.

Matching

Match each vocabulary term with its definition.

- a. cube
- b. cylinder
- c. cone
- d. sphere
- e. prism
- f. pyramid
- g. hemisphere
- 1. a polyhedron formed by a polygonal base and triangular lateral faces that meet at a common vertex
- _____ 2. a prism with six square faces
 - 3. a polyhedron formed by two parallel congruent polygonal bases connected by lateral faces that are parallelograms
 - 4. a three-dimensional figure with two parallel congruent circular bases and a curved lateral surface that connects the bases
 - 5. a three-dimensional figure with a circular base and a curved lateral surface that connects the base to a point called the vertex

Match each vocabulary term with its definition.

- a. cross section
- b. edge
- c. area
- d. volume
- e. vertex
- f. perimeter
- g. face
- 6. the number of nonoverlapping unit cubes of a given size that will exactly fill the interior of a threedimensional figure
- 7. the intersection of a three-dimensional figure and a plane
 - 8. a segment that is the intersection of two faces of the figure
- 9. a flat surface of the polyhedron
- 10. the point that is the intersection of three or more faces of the figure

Review Answer Section

MULTIPLE CHOICE

1. ANS: A

V = lwh	Volume of a right rectangular prism
$V = (13)(9)(5) = 585 \text{ cm}^3$	Substitute 13 for l , 9 for w , and 5 for h .

	Feedback
Α	Correct!
В	The prism has a rectangular base.
С	The volume of a right rectangular prism is equal to the product of its length, width, and
	height, and is expressed in cubic units.
D	The volume of a right rectangular prism is equal to the product of its length, width, and
	height.

	PTS: 1	DIF: Basic	REF: 1c67a592-4683-11df-9c7d-001185f0d2ea
	OBJ: 11-2.1 Findir	ig Volumes of Prisms	TOP: 11-2 Volume of Prisms and Cylinders
	KEY: prism volun	ne	DOK: DOK 2
2.	ANS: C		
	Step 1 Use the base	area to find the radius.	
	$\pi r^2 = 64 \pi$	Substitute 64π for the	e base area.
	<i>r</i> = 8	Solve for <i>r</i> .	
	Step 2 Use the radiu	s and height to find the	volume. The height is equal to the radius, so $h = \delta$.

Step 2 Use the radius and height to find the volume. The height is equal to the radius, so h = 8. $V = \pi r^2 h$ Volume of a cylinder $V = 64 \pi (8) = 512 \pi$ in $^3 \approx 1,608.5$ in 3 Substitute 8 for r and h.

	Feedback
Α	The volume of a cylinder is equal to pi times the radius squared times the height.
В	The base area is equal to pi times the radius squared.
С	Correct!
D	Use the base area to find the radius. Then use the radius and height (equal to the radius)
	to find the volume.

	PTS:	1	DIF:	Average	REF:	1c6a2efe-4683-11df-9c7d-001185f0d2ea
	OBJ:	11-2.3 Finding	g Volu	mes of Cylir	nders	NAT: NT.CCSS.MTH.10.9-12.G.GMD.3
	STA:	MACC.912.G	-GMD	.1.3	TOP:	11-2 Volume of Prisms and Cylinders
	KEY:	volume cylin	nder		DOK:	DOK 2
3.	ANS:	А				
	V = lw	h	Vo	olume of a ri	ight rectang	gular prism
	= (2x +	+ 1)(x)(3x)	Su	bstitute (2x	+ 1) for l, x	t for w , and $3x$ for h .
	$= 6x^3$	$+ 3x^2$	Si	mplify.		

	Feedback
Α	Correct!
В	To find the volume of the figure, multiply length times width times height.
С	This is the surface area of the figure. Find the volume.
D	To find the volume of the figure, multiply length times width times height.

PTS: 1 DIF: Advanced REF: 1c6ef3b6-4683-11df-9c7d-001185f0d2ea TOP: 11-2 Volume of Prisms and Cylinders KEY: volume | prism DOK: DOK 3

4. ANS: C

5.

6.

 $V = \frac{1}{3}Bh = \frac{1}{3}(14 \cdot 8)(5) = 186.7 \text{ cm}^3$

	Feedback
Α	The volume of a rectangular pyramid is equal to the product of one third of its base area
	times its height.
В	The volume of a rectangular pyramid is equal to the product of one third of its base area
	times its height.
С	Correct!
D	The volume of a rectangular pyramid is equal to the product of one third of its base area
	times its height.

PTS:	1 DIF: Basic	REF:	1c712f02-468	3-11df-9c7d-001185f0d2ea
OBJ:	11-3.1 Finding Volumes of P	yramids	NAT:	NT.CCSS.MTH.10.9-12.G.GMD.3
STA:	MACC.912.G-GMD.1.3	TOP:	11-3 Volume	of Pyramids and Cones
KEY:	volume pyramid	DOK:	DOK 2	
ANS:	В			
$V=rac{1}{3}$	Bh	Use the for	mula for volun	ne of a regular pyramid.
$=\frac{1}{3}$	$(1,000)(100) \approx 33,333.33 \text{ ft}^2$	Substitute	1,000 for <i>B</i> and	1 100 for <i>h</i> .

	Feedback
Α	The volume is one-third the area of the base times the height.
В	Correct!
С	The volume is one-third the area of the base times the height.
D	The volume is one-third the area of the base times the height.

PTS: 1 D OBJ: 11-3.2 Application	IF: Average	REF: 1c73915e-4683-11df-9c7d-001185f0d2ea NAT: NT.CCSS.MTH.10.9-12.G.GMD.3
STA: MACC.912.G-G	MD.1.3	TOP: 11-3 Volume of Pyramids and Cones
KEY: volume pyramic	1	DOK: DOK 2
ANS: D		
Step 1 Use the circumfe	rence to find the ra	adius.
$2\pi r = C$		
$2\pi r = 21\pi$	Substitute 21π for	or <i>C</i> .
r = 10.5 in.	Divide both sides	s by 2π .

Step 2 Use the radius to find the height.

2(10.5) - 5 = 16 in. The height is 5 in. less than twice the radius.

Step 3 Use the radius and height to find the volume.

$V = \frac{1}{3} \pi r^2 h$	Volume of a cone
$=\frac{1}{3}\pi(10.5)^2(16)$	Substitute 10.5 for r and 16 for h .
$= 588\pi \text{ in}^3 \approx 1,847$	3 in ³ Simplify.

	Feedback
Α	The height is less than twice the radius.
В	The volume of a cone is equal to a third of the product of pi times the radius squared times the height.
С	The circumference is equal to 2 times pi times the radius.
D	Correct!

PTS: 1 DIF: Average	REF: 1c73b86e-4683-11df-9c7d-001185f0d2ea
OBJ: 11-3.3 Finding Volumes of Cones	NAT: NT.CCSS.MTH.10.9-12.G.GMD.3
STA: MACC.912.G-GMD.1.3	TOP: 11-3 Volume of Pyramids and Cones
KEY: volume cone	DOK: DOK 2
ANS: C	
Original dimensions:	
$V = \frac{1}{3}Bh = \frac{1}{3}(30 \times 40)(60) = \frac{72,000}{3} = 24,000$) ft ³

Length, width, and height multiplied by $\frac{1}{3}$:

7.

 $V = \frac{1}{3}Bh = \frac{1}{3}\left(\frac{30}{3} \times \frac{40}{3}\right)\left(\frac{60}{3}\right) = \frac{72,000}{81} = \frac{1}{27} \times \frac{72,000}{3} = 888\frac{8}{9} \text{ ft}^3$

If the length, width, and height are multiplied by $\frac{1}{3}$, the volume is multiplied by $\frac{1}{27}$.

	Feedback
Α	Find the volumes of the original pyramid and the smaller pyramid and compare them.
В	Find the volumes of the original pyramid and the smaller pyramid and compare them.
С	Correct!
D	Find the volumes of the original pyramid and the smaller pyramid and compare them.

REF: 1c75f3ba-4683-11df-9c7d-001185f0d2ea PTS: 1 DIF: Average OBJ: 11-3.4 Exploring Effects of Changing Dimensions NAT: NT.CCSS.MTH.10.9-12.G.GMD.3 STA: MACC.912.G-GMD.1.3 TOP: 11-3 Volume of Pyramids and Cones DOK: DOK 2 KEY: change dimensions | volume | pyramid 8. ANS: C The volume of the cylinder is $V = \pi r^2 h = \pi (3)^2 (3) = 27 \pi \text{ ft}^3$. The volume of the cone is $V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi (3)^2 (3) = 9 \pi \text{ ft}^3$. The volume of the water tank is the sum of the volumes. V = (cylinder volume) + (cone volume)

 $= 27\pi \text{ ft}^3 + 9\pi \text{ ft}^3 = 36\pi \text{ ft}^3 \approx 36 \times 3.14 = 113.04 \text{ ft}^3.$

	Feedback
Α	Add the volume of the cone to the volume of the cylinder.
В	Add the volume of the cone to the volume of the cylinder.
С	Correct!
D	The height of the cylinder is 3 ft, not 6 ft.

PTS: 1 DIF: Average REF: 1c785616-4683-11df-9c7d-001185f0d2ea

OBJ: 11-3.5 Finding Volumes of Composite Three-Dimensional Figures NAT: NT.CCSS.MTH.10.9-12.G.GMD.3 STA: MACC.912.G-GMD.1.3

- NAT: NT.CCSS.MTH.10.9-12.G.GMD.3 TOP: 11-3 Volume of Pyramids and Cones
- KEY: composite figure | cone | cylinder | volume DOK: DOK 2 9. ANS: B $V = \frac{4}{3} \pi r^3$ Volume of a sphere $288 \pi = \frac{4}{3} \pi r^3$ Substitute 288π for V.

$216 = r^3$	Divide both sides by $\frac{4}{3}\pi$.
<i>r</i> = б	Take the cube root of both sides.
d = 12 cm	d = 2r

	Feedback
Α	The volume of a sphere is equal to 4/3 times pi, times the radius raised to the third
	power.
В	Correct!
С	The volume of a sphere is equal to 4/3 times pi, times the radius raised to the third
	power.
D	Find the diameter of the sphere, not the radius.

PTS:	1	DIF:	Average	REF:	1c787d26-468	3-11df	-9c7d-001185f0d2ea
OBJ:	11-4.1 Finding	g Volur	nes of Spheres			NAT:	NT.CCSS.MTH.10.9-12.G.GMD.3
STA:	MACC.912.G	-GMD	1.3	TOP:	11-4 Spheres		
KEY:	volume spher	re		DOK:	DOK 2		
ANS:	С						
$V = \frac{4}{3}$	m ³	Volum	e of a sphere				
4	2						

- $V = \frac{4}{3} \pi 6^3$ Substitute 6 for *r*.
- $V = 288 \pi$ Simplify.

10.

PTS: 1 DIF: Basic REF: 1c7ab872-4683-11df-9c7d-001185f0d2ea

	OBJ: 11-4.1 Finding Volum	nes of Spheres	NAT:	NT.CCSS.MTH.10.9-12.G.GMD.3
	STA: MACC.912.G-GMD.	1.3 TOP: 11-4 Spheres		
	KEY: volume sphere	DOK: DOK 2		
11.	ANS: C			
	$V = \frac{4}{3} \pi r^3$	Volume of a sphere		
	$288 = \frac{4}{3} \pi r^{3}$	Substitute 288 for V.		
	<i>r</i> = 6	Solve for <i>r</i> .		
	$S = 4 \pi r^2$	Surface area of a sphere		
	$S = 4 \pi (6)^2 = 144 \pi m^2$	Substitute 6 for <i>r</i> .		

	Feedback
Α	Surface area has pi in its formula.
В	Substitute the radius to solve for surface area.
С	Correct!
D	Solve for radius first.

PTS:	1	DIF:	Basic	REF:	1c7d41de-468	3-11df	9c7d-001185f0d2ea
OBJ:	11-4.3 Finding	g Surfac	ce Area	of Spheres		NAT:	NT.CCSS.MTH.10.9-12.G.GMD.3
STA:	MACC.912.G	-GMD.	1.3	TOP:	11-4 Spheres		
KEY:	surface area s	sphere		DOK:	DOK 2		

NUMERIC RESPONSE

1. ANS: 12

PTS:1DIF:AdvancedREF:1c89069a-4683-11df-9c7d-001185f0d2eaNAT:NT.CCSS.MTH.10.9-12.G.GMD.3STA:MACC.912.G-GMD.1.3TOP:11-3 Volume of Pyramids and ConesKEY:volume | pyramidDOK:DOK 2KEY:Volume | pyramid

MATCHING

1.	ANS:	F PTS	: 1	DIF:	Basic		
	REF:	1c892daa-4683-11c	lf-9c7d-001185f	0d2ea		TOP:	11-1 Solid Geometry
	DOK:	DOK 1					
2.	ANS:	A PTS	: 1	DIF:	Basic		
	REF:	1c8b68f6-4683-11c	f-9c7d-001185f	0d2ea		TOP:	11-1 Solid Geometry
	DOK:	DOK 1					
3.	ANS:	E PTS	: 1	DIF:	Basic		
	REF:	1c92900a-4683-11c	lf-9c7d-001185f	0d2ea		TOP:	11-1 Solid Geometry
	DOK:	DOK 1					
4.	ANS:	B PTS	: 1	DIF:	Basic		
	REF:	1c8df262-4683-11c	f-9c7d-001185f	0d2ea		TOP:	11-1 Solid Geometry
	DOK:	DOK 1					
5.	ANS:	C PTS	: 1	DIF:	Basic		
	REF:	1c902dae-4683-11c	lf-9c7d-001185f	0d2ea		TOP:	11-1 Solid Geometry

DOK: DOK 1

6.	ANS:	D PTS:	1 DI	F: Basic	
	REF:	1c92b71a-4683-11df	-9c7d-001185f0d2e	a	
	TOP:	11-2 Volume of Prist	ms and Cylinders		DOK: DOK 1
7.	ANS:	A PTS:	1 DI	F: Basic	
	REF:	1c94f266-4683-11df	-9c7d-001185f0d2e	a	TOP: 11-1 Solid Geometry
	DOK:	DOK 1			
8.	ANS:	B PTS:	1 DI	F: Basic	
	REF:	1c9c197a-4683-11df	-9c7d-001185f0d2e	a	TOP: 11-1 Solid Geometry
	DOK:	DOK 1			
9.	ANS:	G PTS:	1 DI	F: Basic	
	REF:	1c977bd2-4683-11df	-9c7d-001185f0d2	ea	TOP: 11-1 Solid Geometry
	DOK:	DOK 1			
10.	ANS:	E PTS:	1 DI	F: Basic	
	REF:	1c9c408a-4683-11df	-9c7d-001185f0d2e	a	TOP: 11-1 Solid Geometry
	DOK:	DOK 1			